Адміністрація вирішила продати даний сайт. За детальною інформацією звертайтесь за адресою: rozrahu@gmail.com

Ітераційні методи розвязування СЛАР

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
ІКТА
Факультет:
Не вказано
Кафедра:
Не вказано

Інформація про роботу

Рік:
2012
Тип роботи:
Лабораторна робота
Предмет:
Комп’ютерні методи дослідження інформаційних процесів та систем
Варіант:
9

Частина тексту файла

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» ІКТА кафедра ЗІ  З В І Т до лабораторної роботи №3 з курсу: «Комп'ютерні методи дослідження інформаційних процесів і систем» на тему: «Ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь» Львів – 2012 ТЕКСТ ПРОГРАМИ РЕЗУЛЬТАТ РОБОТИ ПРОГРАМИ  Мета роботи – ознайомлення з ітераційними методами розв’язування систем лінійних алгебраїчних рівнянь. КОРОТКІ ТЕОРИТИЧНІ ВІДОМОСТІ: Ітераційні методи розв’язування систем лінійних алгебраїчних рівнянь  До ітераційних методів належать: метод простої ітерації, метод Зейделя, метод верхньої релаксації та інші. Метод простої ітерації. Нехай задано лінійну систему  (1) Розглянемо матриці    Тоді систему (1) можна записати у вигляді матричного рівняння  (2) Будемо вважати, що діагональні коефіцієнти  (і = 1, 2,…, n). Розв’яжемо перше рівняння системи (1) відносно , друге відносно  і т.д. Тоді одержимо еквівалентну систему  (3) де  , при ; , при ; ; ;  Кажуть, що система (3) зведена до нормального вигляду. Введемо матриці ( та (   Систему (3) запишемо у вигляді  (4) Систему (3) будемо розв’язувати методом послідовних наближень. За нульове наближення позначимо, наприклад, стовпчик вільних членів . Далі послідовно будуємо матриці-стовпці наступних наближень розв’язку системи (4):  – перше наближення  – друге наближення і т.д. Будь-яке (k + 1)-е наближення обчислюється за формулою: , (k = 0, 1, 2, …) (5) В розгорнутому вигляді . Якщо послідовність наближень  має границю , (6) то ця границя є розв’язком системи (3). На практиці ітераційний процес припиняють, коли , де ( – гранична абсолютна похибка. Приклад. Розв’язати систему методом простої ітерації: . Зведемо систему до нормального вигляду  (7) або в матричній формі  (8) За нульові наближення коренів системи приймаємо вектор вільних членів: . Підставляємо ці значення в праві частини системи (7). Одержимо перші наближення коренів  Далі знаходимо другі і треті наближення коренів   Умови збіжності ітераційного процесу Нехай задано зведена до нормального вигляду система лінійних рівнянь  Умова збіжності: якщо сума модулів елементів рядків або модулів елементів стовпців матриці α менша ніж 1, то процес ітерації для даної системи збігається до єдиного розв’язку незалежно від вибору вектора початкових наближень. Наприклад задано систему:  Зведена до нормального виду система:  Матриця  заданої системи:  Cума модулів коефіцієнтів по стовпцях:  Таким чином умова збіжності ітераційного процесу для заданої системи виконується. Аналогічно можна було б перевірити виконання умови збіжності, беручи суми модулів елементів рядків матриці . Наведена вище умова є достатньою, але не є необхідною. Це означає, що якщо умова виконується, то процес буде збіжним. Коли ж умова не виконується, то це ще не означає, що процес буде розбіжним. Для системи лінійних рівнянь, заданих у вигляді (2) умова збіжності ітераційного методу формулюється так. Ітераційний метод розв’язування системи (2) збігається, якщо модулі діагональних коефіцієнтів  для кожного рівняння системи більші, ніж суми модулів всієї решти коефіцієнтів даного рівняння (не враховуючи вільних членів). Приклад: Умова збіжності:  (9) Задана система:  (10) Перевірка умови:  (11) У випадку, якщо для заданої системи умова збіжності не виконується і ітераційний процес методу є розбіжним, необхідно добитися виконання умови збіжності шляхом лінійних перетворень заданої системи (перестановка рядків, стовпців матриці коефіцієнтів, домноження рівнянь на деякий коефіцієнт, додавання, віднімання рівнянь, тощо). Дещо простішій програмній реалізації піддається наступна формула методу простих ітерацій:  (12) Звідки вона береться? Відомо, що при зведенні системи  до вигляду  кожне  представляється у вигляді  або  . Якщо зняти обмеження j ( i, то цю формулу можна переписати у такому вигляді  . Звідси вип...
Антиботан аватар за замовчуванням

28.05.2013 18:05

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Завантаження файлу

Якщо Ви маєте на своєму комп'ютері файли, пов'язані з навчанням( розрахункові, лабораторні, практичні, контрольні роботи та інше...), і Вам не шкода ними поділитись - то скористайтесь формою для завантаження файлу, попередньо заархівувавши все в архів .rar або .zip розміром до 100мб, і до нього невдовзі отримають доступ студенти всієї України! Ви отримаєте грошову винагороду в кінці місяця, якщо станете одним з трьох переможців!
Стань активним учасником руху antibotan!
Поділись актуальною інформацією,
і отримай привілеї у користуванні архівом! Детальніше

Оголошення від адміністратора

Антиботан аватар за замовчуванням

пропонує роботу

Admin

26.02.2019 12:38

Привіт усім учасникам нашого порталу! Хороші новини - з‘явилась можливість кожному заробити на своїх знаннях та вміннях. Тепер Ви можете продавати свої роботи на сайті заробляючи кошти, рейтинг і довіру користувачів. Потрібно завантажити роботу, вказати ціну і додати один інформативний скріншот з деякими частинами виконаних завдань. Навіть одна якісна і всім необхідна робота може продатися сотні разів. «Головою заробляти» продуктивніше ніж руками! :-)

Новини